Offline HW/SW Authentication for Reconfigurable Platforms

Eric Simpson, Patrick Schaumont

Overview

- Why today's security mechanisms are insufficient
- New approach to securing reconfigurable designs

Reconfigurable Designs

- Reconfigurable: chip whose logic function is programmed by customer *after* the IC has been fabricated
 - Design represented by bitstream, not a physical chip
- Security considerations for bitstream?

Bitstream Piracy Example

Does physical chip need to be stolen for your system to be pirated?

Current Bitstream Security

- Bitstream is stored encrypted offchip
 - Decrypted upon entering FPGA
 - Then used to configure chip

How to deal with larger designs?

- Increasing density of FPGAs
 - 185 thirty-two bit RISC processors on a single chip

"Using IP library elements in a 'cut-andpaste' design style is the only way to reach the necessary design productivity"

- Muscular Methods for Mammoth Designs

FPGA IP Market

 Practically non-existent IP market for reconfigurable targets

"Commercial model for IP cores involves large up-front fees reminiscent of ASIC NRE charges"

- T. Kean, Algotronix

 No security assurances between system developers and IP providers

Bitstream Encryption is Insufficient

- Secure interaction between multiple parties involves three components:
 - (1) Privacy
 - (2) Authenticity
 - (3) Integrity

• Bitstream encryption only provides *privacy*

HW/SW Mutual Authentication

• Allows secure, authenticated distribution and integration between multiple parties

Identity

- In order to authenticate something, its identity needs to be established
- HW Identity
 - Characterized by the physical silicon of the chip
- IP Identity
 - Sequence of processor executed opcodes
 - Bitstream that represents a custom logic function

HW Identity

- Standard security and authentication module manufactured in each chip
- Contains a Physically Unclonable Function (PUF)
 - Uniquely identify a chip by utilizing the inherent variation in the underlying silicon

PUF Challenge/Response

• At a high-level, PUF is characterized by its challenge, response pairs

IP Identity

- Nothing physical to characterize about IP
- Represented by sequence of ones, zeros and name we give it

Authentication Protocol

- Can assign identities to:
 (1) Hardware
 (2) IP
- Authentication protocol is divided into two phases:
 - (1) Enrollment
 - (2) Request and Distribution

Securely Authenticate HW and IP?

Enrollment Protocol

 Used to establish repository of HW/IP identities

Enrollment Protocol

- HW Identity Transmitted by Chip Manufacturer
 - *HW#* : Hardware ID (e.g. manufacturer serial number)
 - *<CRP>* : List of challenge, response pairs
- IP Identity Transmitted by IP Provider
 - *IP#* : IP ID (e.g. Name and release version)
 - Hash(IP Data, IP#)

Secure IP Request and Distribution

- Enrollment continues in background
- Design Example:
 - Prototype portable TIVO player with HDTV capability
 - TIVO isn't focused on designing HDTV decoders
 - TIVO utilizes third-party HDTV core in their system

Secure IP Request and Distribution

System Block Diagram

• Xilinx Virtex-II FPGA

Security Module

Loading external IP

- Secure IP is stored off-chip in the following three-part format:
 - Opcode[load]
 Cttp, {IP#,Hash (IP, IP#),Cip,Nonce}Rttp
 {Length,Nonce, IP}Rip
- Not limited to single IP module
- At runtime can swap modules in and out

Generating CRPs

- Generating a CRP list requires the following message:
 - **1.** *Opcode*[*CRP*], *Seed, # of pairs to generate*
- Seed = 64-bit random number
- # of pairs to generate = 64-bit integer

CRP Generation Algorithm

 $C_0 = PUF (PUF(seed))$

 $R_0 = PUF(C_0)$

For i = 1 to # of pairs to generate

$$C_{i} = PUF(R_{i-1}) ^{n} i ^{n} R_{i-1}$$

$$R_i = PUF(C_i)$$

Conclusion

- Bitstream encryption alone is insufficient to cope with multiple IP originators
- Our mutual HW/SW authentication scheme is able to cope with systems integrating multiple sources of IP
- More lightweight than other trusted-computing ideas
- System can deployed in an offline context
- Backward compatible with existing approaches to downloading FPGA bitstreams